
After reading this chapter, you will be able to

• • understand the concepts relating to exception and exception handling
•• learn the different types of exceptions
• • know about the methods for dealing with exceptions
•• learn how a programmer can create his/her own exceptions
• • know about multiple type–catch blocks introduced in Java SE 7
•• understand the concept relating to rethrowing exceptions
•• know the basics of Throws clause
• • write programs for managing different types of exceptional conditions using various keywords, for

making use of try–catch block, nested try–catch block, rethrowing exceptions, and so on, and using
user defined exceptions

CHAPTER

Learning Objectives

11.1 Introduction
There is no guarantee that a perfectly compiled and running program will not crash. An exceptional situation
may arise due to human or machine error. Some of the examples of exceptions are as follows:

 1. When user enters a negative number as the size of an array
 2. When the user provides a negative number as argument in the method for fi nding square root
 3. When the program has to execute division by zero
 4. When there is insuffi cient memory space
 5. When the requisite fi le is not found
 6. When a network connection is lost during the communication process
 7. When the user tries to open a non-existing fi le

In fact, there are a large number of such exceptions that may come up during the running of a program.
In Java, an exception is an object of a relevant exception class. When an error occurs in a method, it throws t

out an exception object that contains the information about where the error occurred and the type of error.
The error (exception) object is passed on to the runtime system, which searches for the appropriate code that
can handle the exception. The event handling code is called exception handler. Exception handling is a mech-
anism that is used to handle runtime errors such as classNotFound and IO. This ensures that the normal fl ow

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead2

of application is not disrupted and program execution proceeds smoothly. The exception handling code han-
dles only the type of exception that is specifi ed for it to handle. The appropriate code is the one whose spec-
ifi ed type matches the type of exception thrown by the method. If the runtime system fi nds such a handler, it
passes on the exception object to the handler. If an appropriate handler is not found, the program terminates.

Important

An exception is an undesirable event that may occur during the execution of the program and may
lead to termination of the program if it is not handled properly.

The method that creates an exception may itself provide a code to deal with it. The try and catch blocks are
used to deal with exceptions. The code that is likely to create an exception is kept in the try block, which may
include statements that may create or throw exceptions. The exception object has a data member that keeps
information about the type of exception and it becomes an argument for another block of code that is meant to
deal with the exception, catch block, which follows immediately after the try block. There may be more than
one catch blocks. The exception is caught by a catch block whose type matches the type of exception thrown.

There are basically two models of exception handling. The exception handling facility supported in Java is
based on the termination model. According to this model, when the method encounters an exception, further
processing in that method is terminated and control is transferred from the point where an exception occurs to
the point where its nearest matching exception handler (i.e., the catch block) is located. Under this approach,
the control is not transferred to the point of exception occurrence and the program execution is not resumed
from there, even if the cause of exception is rectifi ed by the exception handler. In this case, the runtime stack
is usually unwound. This causes all the statements and method invocations to terminate abruptly. However, the
program execution may not necessarily terminate. This model is analogous to the real-life situation when
the gas in the cylinder gets over while cooking. Under the termination model, the cooking process will stop,
whereas in resumption model, you would change the cylinder with a new one and continue with the cooking
process.

Thus, the alternative approach is based on the resumption model wherein the exception handler tries
to rectify the exception situation and resume the program. Resumption model was mostly used in earlier
languages including PL/I, Mesa, and BETA. The implementation of resumption model in contemporary lan-
guages such as C++ and Java is rarely found as the effort to implement this model is quite high. This is
because the program code becomes quite cumbersome and diffi cult to understand, and further, it is more
error prone. However, there are situations where the resumption model is quite useful. For instance, when
OutOfMemory error arises during the program execution, it could be solved in certain cases by freeing data
structures (written within the handler) that occupied the memory space. Therefore, by using resumption
code, the program execution would resume from the place where an exception is raised. According to various
researchers (Stroustrup, 2000, Koenig and Stroustrup, 1990), the resuming exception handlers are very much
similar to function calls. In order to apply resumption model, the existing exception handling mechanism
available in Java needs to be extended. One of the methods involves including throw statement containing
one or more accept clauses.

11.2 Hierarchy of Standard Exception Classes
In Java, exceptions are instances of classes derived from the class Throwable which in turn is derived from
class Object. Whenever an exception is thrown, it implies that an object is thrown. However, it does not mean
that any object can be thrown. Only objects belonging to class that is derived from class Throwable can be
thrown as exceptions. The hierarchy of the classes is shown in Fig. 11.1. The next level of derived classes com-
prises two classes: the class Error and class Exception. Error class involves errors that are mainly caused by
the environment in which an application is running. All errors in Java happen during runtime, and therefore,

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 3

they are of unchecked type. Some of the examples including OutOfMemoryError occurs when the JVM runs
out of memory and StackOverfl owError occurs when the stack overfl ows. On the other hand, Exception class
represents exceptions that are mainly caused by the application itself—for instance, ArithmeticException
and NullPointerException. It is not possible to recover from an error using try–catch blocks. The only option
available is to terminate the execution of the program and recover from exceptions using either the try–catch
block or throwing an exception. The exception class has several subclasses that deal with the exceptions that
are caught and dealt with by the user’s program.

The Error class includes such errors over which a programmer has less control. There are three subclasses
of Error class, that is LinkageError, VirtualMachineError, and ThreadDeath. Then, there are several subclasses
of VirtualMachineError class and LinkageError class. A programmer cannot do anything about these errors
except to get the error message and check the program code.

A programmer can have control over the exceptions (errors) defi ned by several subclasses of class
Exception. These are also called Built-in-Exceptions in Java. The subclasses of Exception class are broadly
subdivided into two categories.

Unchecked exceptions These are subclasses of class RuntimeException, which are derived from Exception
class. For these exceptions, the compiler does not check whether the method that throws these exceptions has
provided any exception handler code or not.
Checked exceptions These are direct subclasses of the Exception class and are not subclasses of the class
RuntimeException. These are called so because the compiler ensures (checks) that the methods that throw
checked exceptions deal with them. This can be done in two ways:

 1. The method provides the exception handler in the form of appropriate try–catch blocks.
 2. The method may simply declare the list of exceptions that the method may throw with throws clause

in the header of the method. In this case, the method need not provide any exception handler. It is a
reminder for those who use the method to provide the appropriate exception handler.

If a method does not follow either of the aforementioned ways, the compilation will result in an error.

Important

The compiler checks if a method that calls another method can throw exceptions that either provide
for appropriate catch blocks for dealing with the exception or declare it in the throws part of its
header.

Object

Throwable

Error

LinkageError ThreadDeath RuntimeException

ArithmeticException

ClassNotFoundException

IllegalAccessException

InterruptedExceptionClassCastException

ArrayStoreException

Other Exceptions

Unchecked Exceptions Checked Exceptions

Other Exceptions

ClassFormatError VirtualMachineError

OutOfMemoryError

InternalErrorNoClassDefFoundError
Other Errors

Other Errors

Exception

Fig. 11.1 Illustration of hierarchy of error and exception classes

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead4

Explanation
The aim of the program is to display the string repre-
sentation of the exception. The try block is given in
lines 4–8 followed by catch block in lines 9–11. The

exception object e is converted into a string in line 10 and is displayed as the second line in the output.

11.3 Keywords throws and throw
If a method can cause one or more checked exceptions directly or indirectly by calling other methods
and throw exceptions and does not deal with them, it must declare the list of exceptions it can throw by
using the throws clause. By doing this, the caller of the method can ensure that appropriate arrangements
are made to deal with the exceptions, that is, keep the method in a try block, and provide suitable catch blocks.
The program will not compile if this is not done. The throws clause comprises the keyword throws followed
by the list of exceptions that the method is likely to throw separated by commas. The method declaration with
throws clause is

type Method_identifier(type parameters) throws list-of-Exceptions
{ /* Body of Method*/ }

The class Throwable defi nes several methods. The three commonly used methods for getting information
about the exceptions are described in Table11.1.

Table 11.1 Methods defined in class Throwable

Method name Description

getMessage () It returns a string that gives information about the current exception and consists of a
fully qualified name of the exception class and a relevant brief description.

toString() The class Throwable overrides the method toString() of Object class for display-
ing messages on screen.

printStackTrace() It traces and displays the hierarchy of method calls that resulted in the exception. The
information will be displayed on the screen in the case of a console program.

Program 11.1: Illustration of toString()in which object e is converted to a string
1
 2
 3
4
 5
 6
 7
 8
 9
10
11
12

class TryCatch1 {
 public static void main (String Str[])
 {int i = 6, j = 0, k;
try {
System.out.println (“Entered try block.”);
 k = i/j;
System.out.println (“Exiting try block.”);
}
catch (ArithmeticException e)
 { System.out.println (“e= ” + e);}
}
}

The application of toString() is illustrated in Program 11.1.

Output
Entered try block.
e = java.lang.ArithmeticException: / by zero

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 5

The following example illustrates it.

public void methodY () throws IOException // Header

Name of the
method that

throws Exception

List of
Exceptions

{/*Body of method */}

However, if a method throws an unchecked exception, the method need not declare these in the throws clause
in the header of the method. The keyword throw is used to throw an exception object from within a method.
Using throw keyword, checked and unchecked exceptions can be thrown. The word throw is followed by the
exception class. When the throw statement is executed, the execution of the current method is stopped and the
control goes to the calling method. It is illustrated as follows:

public void methodX() {
int n;
if(n < 0)
throw illegalArgumentException;
double s = sqrt(n);
}

11.4 try, catch, and finally Blocks
For managing different types of exceptional conditions, the fi ve keywords try, catch, fi nally, throw, and
throws are used. The fi rst four are commonly used and they also control the program fl ow. The part of code
that is suspected to create an exceptional situation is placed in a try block. It has the code to throw one or
more types of exceptions that are likely to occur. The try block is immediately followed by one or more catch
blocks of statements to deal with the exceptions thrown in the try block. No other code is allowed between a
try block and catch block.

Important

A catch block catches only a single type of exception. A catch block may deal with more than one
type if they are connected by Boolean operator OR.

Generally, separate catch blocks are provided for catching different types of exceptions thrown by try block.
If a try block throws two types of exceptions, then two separate catch blocks are provided to deal with them.
However, at a time, only one exception can be handled because after an exception is thrown, the program
fl ow goes out of the try block and searches for the appropriate catch block. The subsequent exceptions in
the try block do not get a chance to be thrown. Figure 11.2 illustrates the processes involved in dealing with
exceptional conditions. The code in the fi nally block is always executed irrespective of whether an exception
is thrown or not or whether it is handled or not. Different blocks are explained in the following sections.

11.4.1 try {} Block
The program code that is most likely to create exceptions is kept in the try block, which is followed by the
catch block to handle the exception. In normal execution, the statements are executed and if there are no
exceptions, the program fl ow goes to the code line after the catch blocks. However, if there is an exception,
an exception object is thrown from the try block. Its data members keep the information about the type of
exception thrown. The program fl ow comes out of the try block and searches for an appropriate catch block
with the same type as its argument.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead6

Since Java 7 try-with-resources has been introduced for automatically closing the sources opened in try
block. This is discussed in Section 11.9.

11.4.2 catch {} Block
A catch block is meant to catch the exception if the type of its argument matches with the type of exception thrown.
If the type of exception does not match thee type of the fi rst catch block, thee program fl ow checks the other catch m
blocks one by one (refer to Fig. 11.2). If the type of a catch block matches, its statements are executed. If none e
matches, the program fl ow records the m type of exception, executes thee fi nally block, and terminates the program.

Important

If a programmer has provided several catch blocks that match the exception object thrown, only the
fi rst catch block will be executed and others will be ignored. A catch block for an exception class
will also catch the subclass of the exception class.

Thus, if a programmer provides a catch block for a super class exception followed by a catch block with
subclass exception, only the fi rst will be executed and the second catch block will be ignored. Therefore, the
catch block for a subclass should be provided before the super class catch block. A catch block can catch
more than one type of exception if the argument of catch block contains exception classes connected by the
Boolean operator OR represented by a vertical bar (|).

Figure 11.3 illustrates the sequence of try and catch blocks with analogy from cricket. The catch block has
to be placed immediately after the try block. The fi gure shows that in the game of cricket, when the bowler
bowls, the ball might be caught by the fi elder. Similarly, in try–catch block of Java, when an exception arises,
it is caught by the catch block. Different catch blocks can be used for handling different types of exceptions.

11.4.3 fi nally {} Block
This is the block of statements that is always executed even when there is an exceptional condition, which
may or may not have been caught or dealt with. Only in rare cases, it is bypassed. Thus, fi nally block can be
used as a tool for the clean up operations and for recovering the memory resources. For this, the resources

Enter try block

Try block throws exceptions
Finds appropriate catch blockstry {//Execute try

block code}

catch (type1 exception)
{//Execute catch block

catch (type2 exception)
{//Execute catch block

catch (type3 exception)
{//Execute catch block

finally {//Execute finally
block code}

No exception
thrown

Fig. 11.2 Illustration of try, catch, and finally blocks

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 7

should be closed in the fi nally block. This will also guard against situations when the closing operations are
bypassed by statements such as continue, break, or return.

An illustration of codes in try, catch, and fi nally blocks is given.

int a = 7, b = 0, d = 0;
try { d = a/b; }
catch(ArithmeticException ae)
 { d = 0; }
fi nally {
System.out.println(“The fi nally block is always executed.”); }

Program 11.2 illustrates the sequence of try, catch, and fi nally blocks of statements. The exception is
thrown when an attempt is made to divide by zero, which throws ArithmeticException. The catch block has
ArithmeticException as its argument.

catch(ArithmeticException e) { /* body */ }

Program 11.2 illustrates the try and catch blocks of statements. The exception is created due to the division
by zero.

try block

catch block
for one type
of exception

catch block for
another type of
exception

try { ctry block atch (noBall){ }

throw (Exception noBall)

} h (b ll) {

Fig. 11.3 Illustration of sequence of try and catch blocks

Program 11.2: Illustration of try{} and catch{} blocks for dealing with exceptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

class TryCatch
 {public static void main (String Str[])
 { int i = 6, j = 0, k;

try {
System.out.println (“Entered try block.”);
 k = i/j;
System.out.println (“Exiting try block.”);
} // end of try block.
 //Below catch block starts
catch (ArithmeticException e)
{ System.out.println (“Arithmetic Exception caught.”);
System.out.println (“Exiting catch block.”);
} // end of catch block
 j = 2; // value of j changed
System.out.println (“When j = 2 the i/j = ” + i/j);
 }
}

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 21

Program 11.15: Illustration of try-with-resources
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import java.io.*;
public class TryWithResource {
 public static void main (String arg[])
 throws IOException

{String str = “Java is a purely object oriented language.”;
 byte [] bstr = str.getBytes();

try(OutputStream fi leOUT = new FileOutputStream(“myFile”);)
{
 for (int k=0; k<bstr.length; k++)
fi leOUT.write(bstr [k]);
}
try(InputStream fi leIn = new FileInputStream(“myFile”);)
{
 System.out.println (“Contents of myFile are:”);
for (int i =0; i<= bstr.length; i++)
System.out.print((char) fi leIn.read());
 System.out.println();
 }
}}

33
34
35

 }
 }
}

Output
Contents of myFile are:
Java is a purely object oriented language.

Explanation
The program illustrates the conventional way of
closing sources that has already been explained in
the program. Note that the close operation in fi nally

block may also throw exception, which is managed within the fi nally block.
In Program 11.15, the try-with-source is illustrated. According to new addition of try-with-source in

Java 7, the code of the program for writing to the fi le is simplifi ed as

byte [] bstr = str.getBytes();
 // opens resource as argument of try
try(OutputStream fi leOUT = new FileOutputStream(“myFile”);)
{ for (int k=0; k<bstr.length; k++)
fi leOUT.write(bstr [k]);
}

No statement is needed for closing because it automatically closes the resource when try block ends. This
happens because OutputStream implements the AutoCloseable interface and the fi le source is opened as argu-
ment of try. A similar code is created for opening the fi le for reading.

Output
Contents of myFile are:
Java is a purely object oriented language.

Explanation
For writing to the fi le, the output stream object is
created as argument of try in code line 9. Therefore,
no close statement is required. Similarly, for reading

from fi le the InputStream object fi leIn is created in code line 14 as argument of try. Therefore, no close state-
ment is needed for this as well.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead22

Program 11.16: Illustration of subclass overridden method declaring checked exception
1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

package sub;

import java.io.*;

class A
{
 void display()
 {
 System.out.println(“Super class display method”);
 }
}

public class Sub extends A {

 void display() throws IOException
 {
 System.out.println(“Sub class display method”);

 }
 public static void main(String[] args) {
 A obj1 = new A();
 obj1.display();
 Sub obj2 = new Sub();
 obj2.display();
 }

}

Output
Super class display method
Exception in thread “main” java.lang.RuntimeException.

Program 11.17: Illustration of overridden method declaring unchecked exception
1
 2
 3
4
 5
 6
7
 8
 9
10

package sub;

import java.io.*;

class A
{
 void display()
 {
 System.out.println(“Super class display method”);
 }

11.10 Catching Subclass Exception
A programmer may defi ne some method in super class. When this method is overridden in subclass with
exception handling, then there are some points that need to be taken into consideration. If the super class
method does not declare any exception, then subclass overridden method cannot declare checked exceptions
but it can declare unchecked exceptions. This is illustrated in Program 11.16.

Explanation
In the aforementioned example, method
display() does not throw any exception
in super class. Therefore, its overridden

version cannot throw any checked exception. Program 11.17 illustrates the case when the subclass overridden
method throws unchecked exception.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead24

Output
Super class display method

Program 11.19: Illustration of getMessage() and user’s own exception class
1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

class UserException extends Exception
 {
UserException (String Message)
 { super (Message);
 } } // End of class UserException
 class ExceptionEX
 {public static void main(String args[])
 { byte a = 4, b = 9 ;

try
 {if(a/b== 0)
throw new UserException (“It is integer division.”);
 }
catch (UserException Ue)
 {System.out.println(“The exception has been caught.”);
System.out.println(Ue.getMessage());}
 }}

Output
The exception has been caught.
It is integer division.

29
30
31

 catch(Exception e){}
 }

}

11. 11 Custom Exceptions
It is also called as user defi ned exception. A programmer may create his/her own exception class by extending
the exception class and can customize the exception according to his/her needs. Using Java custom exception,
the programmer can write their own exceptions and messages. For writing custom exceptions, the following
steps need to be considered:

 1. Extend the ‘Exception’ class as
classUserException extends Exception

Name of the user
Exception class

Extending the
Exception class

 { //Statements
 }

 2. Defi ne constructor of user exception class and this constructor takes a String argument.
 3. Write the code for the class containing the main class. The try–catch block is written within this class

(see Program 11.9 for an illustration).

Explanation
The program defi nes a user exception in lines 3–5, which is linked to
an integer division a/b kept in the try block. The integer division a/b
results in 0, and thus, exception occurs. The message is displayed in
the last line of output.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 25

11.12 Nested try and catch Blocks
In nested try–catch blocks, one try–catch block can be placed within another try’s body. Nested try block is
used in cases where a part of block may cause one error and the entire block may cause another error. In such
cases, exception handlers are nested.

If a try block does not have a catch handler for a particular exception, the next try block’s catch handlers
are inspected for a match. If no catch block matches, then the Java runtime system handles the exception.

The try and catch block may be nested as

try{// main try block
 //statements
 try { // try block 1
 //statements
 try { // try block 2
 /* statement */}
 catch(Exception e1)
 {// statements. Innermost catch block}
 }
 catch(Exception e2)
 {/*statements. Middle catch block.*/}
 }
catch()
 {/* Statements. outer most catch block*/}

In order to understand better, each try block is given a name such as try block 1 and try block 2. From the
aforementioned statements, it can be seen that try block 2 is placed inside the try block 1, which is inside
the main try block.

Program 11.20 presents an illustration.

Program 11.20: Illustration of nested try–catch blocks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class NestedTry{
public static void main (String args[])
{int [] array = {6, 7};
 //outer try block
try {
System.out.println(“Entered outer try block.”);
 {
 // inner try block
try {
System.out.println (“Entered inner try block.”);
 for (inti = 0; i<= 2; i++)
System.out.println (“Array Element[“+i+”]= ” + array[i]);
System.out.println (“Exiting try block.”);
 }
 // inner catch block
catch (ArrayIndexOutOfBoundsException e)
{System.out.println (“ArrayIndexOutOfBoundsException caught”);
System.out.println (“Exiting inner catch block.”);
} }
int n = 5, j=2 ;
 for (j =2; j>=0; j--)
System.out.println (“n/j = ” + n/j);
}
// outer catch block
catch (ArithmeticException E)

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead26

26

27
28

 {System.out.println (“Arithmetic Exception
caught”);
 }}
}

Output
Entered outer try block.
Entered inner try block.
Array Element[0]= 6
Array Element[1]= 7
ArrayIndexOutOfBoundsException caught
Exiting inner catch block.
n/j = 2
n/j = 5
Arithmetic Exception caught

Program 11.21: Illustration of rethrowing of exceptions
1
 2
 3
 4
 5
 6
7
 8
 9
10
11

12

13
14
15

class Rethrow{
 public static void main (String Str[]){
int [] array = {6, 7};
try {
System.out.println (“Entered inner try block.”);
 for(inti = 0; i<= 2; i++)
System.out.println (“Array Element[“+i+”]= ” + array[i]);
System.out.println (“Exiting try block.”);
 }
catch (ArrayIndexOutOfBoundsException e)
 {System.out.println (“ArrayIndexOutOfBounds
Exception caught”);
System.out.println (“Throwing e and exiting inner
catch block.”);
throw e;
 } }
}

Output
Entered inner try block.
Array Element[0]= 6
Array Element[1]= 7
ArrayIndexOutOfBoundsException caught
Throwing e and exiting inner catch block.

Explanation
Two try and catch blocks are included. One try block is
nested in another. There are two for loops, one in the inner r
try block and another in the outer try block. The fl ow con-
trol enters outer try block, and then the inner try block.
The ArrayIndexOutOfBoundsException is encountered. It
enters the inner catch block, catches exception, and then,
gets out of the inner catch block. In the outer block loop,
exception due to division by 0 occurs. This exception is
caught in outer catch block.

11.13 Rethrowing Exception
An exception may be thrown and caught and also partly dealt within a catch block, and then, rethrown. In
many cases, the exception has to be fully dealt within another catch block, and throw the same exception
again or throw another exception from within the catch block.

When an exception is rethrown and handled by the catch block, the compiler verifi es that the type of
rethrown exception is meeting the conditions that the try block is able to throw and there are no other preced-
ing catch blocks that can handle it.

Program 11.21 illustrates one such case.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

import java.util.Scanner;
 import java. util.*;

 class MobileException extends Exception {

public MobileException(String message)
{
super (message);
}
}
public class MobileApp
{
public void mobileCalc() throws MobileException
{double geoArea, r;
int totalChannels;
Scanner sc = new Scanner(System.in);
System.out.println(“Enter the geographical area”);

geoArea = sc.nextDouble();
if (geoArea <= 0)
throw new MobileException (“Do not enter zero geographical area”);

 System.out.println(“Enter number of channels available”);

totalChannels = sc.nextInt();
if (totalChannels <= 1)
throw new MobileException (“Number of channels
should be greater than one”);

System.out.println(“Enter radius of a given cell in Km”);

 r = sc.nextDouble();
 if (r < 1)

Program 11.23: Illustration of cellular mobile system design

In the for loop of the method, compute an exception (division by 0) that can occur. Therefore, in the main method,
the compute method is called in a try block that is followed by a catch block, which catches user defi ned exception.
The output is given.

11.15 Application Program
The main applications, which are design of cellular mobile systems and spindle speeds of machine tools, are
explained in the following sections.

11.15.1 Design of Cellular Mobile System
In cellular mobile system, a particular geographical area is covered by a number of cells. Each cell is assumed
to be having equal size and hexagonal in shape. A group of cells using a different set of frequencies in each
cell is called a cluster. It is to be noted that only a selected number of cells can form a cluster, and therefore,
the cluster size could be 4, 7, 9, 12, and so on. In each cell, a group of frequency channels are allocated in
such a way so as to prevent interference between the channels of one cell and another cell. In Program 11.23,
the coverage area of the cell and number of channels per cell is evaluated.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 29

34
35
36
37
38
39

40
41
42
43
44
45
46

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63

throw new MobileException (“Radius of cell should be positive value”);

double cellArea = r*r*3*(Math.sqrt(3))/2;
// calculating coverage area of each cell
System.out.println(“Coverage area of each
mobile cell in Km square is:”+ cellArea);

double ncells = geoArea/cellArea;
// calculating number of cells in a particular geographical area

System.out.println(“Enter cluster
size, choose one of the values “ + ”as cluster
size 3 or 4 or 7 or 9 or 12”);

int clusterSize = sc.nextInt();
 int chlpercell = (totalChannels/clusterSize);

 System.out.println(“Number of
channels available per cell” + chlpercell);

}
 public static void main (String args[])
{
try{
new MobileApp().mobileCalc(); }
catch(MobileException e)
{
 System.out.println

(“Exception caught”);
}
 }
}

Output
1500
Enter number of channels available
40
Enter radius of a given cell in Km
5
Coverage area of each mobile cell in Km square
is:64.9519052838329
Enter cluster size, choose one of the values as
cluster size 3 or 4 or 7 or 9 or 12
7
Number of channels available per cells

When entering incorrect data

Enter the geographical area
0
mobileapp1.MobileException: Do not enter zero
geographical area

In line 4, MobileException class extends the
class Exception. The custom exception is cre-
ated by extending the Exception class. In line 6,
constructor of MobileException class is defi ned
that takes a String argument. String message is
passed to super class that is the Exception class.
In line 11, public class MobileApp is declared. In
line 13, method mobileCalc() is defi ned that also
contains the “throws MobileException” clause
in the method signature. This implies that the
method may throw an exception. In line 16,
an object of Scanner class is created. In lines
20–21, if geoArea is less than 1, an exception
is thrown with a message “Do not enter zero
geographical area”. Similarly, for lines 26–34.
In line 53, main method is declared. Within the

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead30

try block in lines 55–56, the method mobileCalc()
of the class MobileApp is accessed. If exception
occurs, it is caught in line 57. The mobile cell and
channels per cell is calculated and displayed in
lines 30–50.

Another incorrect data

Enter the geographical area
1500
Enter number of channels available
0
mobileapp1.MobileException: Number of channels
should be greater than one

Another incorrect data

Enter the geographical area
1500
Enter number of channels available
40
Enter radius of a given cell in Km
0
mobileapp1.MobileException: Radius of cell
should be positive value

Program 11.24: Designing spindle speeds of a machine tool
1
2
 3
4
 5
 6
 7
 8

import java.util.Scanner;
class MyException extends Exception
{MyException (String Message)
 {super (Message);}
 } // the class MyException ends

public class AppException {
 public void Compute() throws MyException

11.15.2 Design of Spindle Speeds of Machine Tools
The rotational speed, that is, revolutions per minute, of spindles of machine tools such as drilling machine or
a lathe is designed in geometric progression. Let us assume S

1
 is the minimum speed, S

2
 the maximum speed,

and n the number of speeds. The ratio of any two consecutive speeds is the constant geometric ratio R. Thus,
the n speeds may be written as

S
1
, S

1
× R, S

1
× R2, S

1
× R3 , …, S

1
× Rn−1

The highest speed S
2
 = S

1
× Rn−1

Therefore,
S2SS

1S
 = Rn−1

From this, we can fi nd the ratio R as

R =
S2SS

1

1 1

S

n
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

/()

The individual speeds may be found as S
1
, S

1
 × R, S

1
 × R2, …

In Program 11.24, the user has to enter the values of S
1
 = minspeed, S

2
 = maxspeed, and n. The user may

make a mistake while entering the values; for example, user may enter zero or less than zero for S
1
 or S

2
 or

may enter n = 1 or less than one. The program takes care of these by throwing appropriate exceptions. Since
the exceptions are the programmer’s exception, we defi ne the class MyException that extends the standard
exception class and defi nes the exception.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead32

 (ii) When max speed entered is 0 or less than 0.
Enter the maximum speed
0
Exception caught.
MyException: Maximum speed entered is zero.

 (iii) When minimum speed entered is 0.
Enter the maximum speed
900
Enter the minimum speed
0
Exception caught.

Common Programming Errors and Tips
1. The catch block should immediately follow the try block. No other code is allowed between the try and the catch

block. Inserting any other code between the two will cause error.
2. If a statement or code block or method is likely to throw an exception, it should be placed in a try block. The try

block should be followed by the catch block.

11.16 Best Practices for Dealing with Exceptions
For writing a robust application program, it is important to give serious attention to exceptions, their causes
as well as handling, so that the program can gracefully handle them. Many expert programmers have come up
with the best practices that lead to robust programs. The following are some of the important ones.

1. The exceptions are costly in computer time. Therefore, exceptions should be thrown judicially; otherwise,
throwing too many exceptions would not only make the program diffi cult to understand but also slow execution.m

2. It is better to use built-in exceptions rather than using custom exception. This will make the program
easily understandable because most of the programmers are aware of standard exceptions and know their
behaviour.

3. Do not use Exception or Throwable as argument of catch block because they will catch any subclass
exception and the programmer would not know the exact cause of exception.

4. Do not throw any exception from fi nally block because other executable codes will get ignored. If some
process throws an exception, better deal with it within the fi nally block.

5. Catch only those exceptions that you can handle. Others may be placed in throws clause.
6. Never use exceptions for fl ow control. This makes the program diffi cult to understand and ugly.
7. It is better to do clean up after using exceptions. It is good practice to open resources in try block and

clean up in fi nally block.
8. For declaring a list of exceptions in the header of a method, better use subclasses rather than the Exception

or Throwable class.
9. While designing custom exception, it is a better practice to wrap up standard exception because these are

well known to programmers and the track trace is not lost.
10. For debugging, it helps to know the exact cause of exception. Therefore, make use of method getCause()

to fi nd the exact cause of exception.
11. The empty catch blocks should be avoided because you lose the chance to get the stack trace of exception

and it may leave your object in corrupt state.
12. It is better to use try-with-resource rather than simple try so that you are sure that the resources will be

automatically closed.Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 33

SUMMARY
• An exception is an undesirable event that may occur

during the execution of the program and that may lead
to the termination of the program if it is not handled
properly.

• In Java, an exception is an object of a relevant excep-t
tion class. When an error occurs in a method, it throws
out an exception object that contains the information
about where the error occurred and the type of error.

• Exception handling is a mechanism that is used to
handle runtime errors such as classNotFound and IO.
This ensures that the normal fl ow of application is not
disrupted and program execution proceeds smoothly.

• Java language has a number of built in types of exceptions,
which form a hierarchy of classes. On the top of the hierarchy
is the class Throwable, which is a subclass of class Object.

• The exceptions are instances of classes derived from
the class Throwable. The next level of derived classes
comprises two classes, that is, the class Error and
class Exception.

• The subclasses to Exception class are broadly subdi-
vided into two categories: checked exception classes
and unchecked exception classes

• The unchecked exception classes are subclasses
of class RuntimeException, which is derived from
Exception class.

• The checked exceptions are direct subclasses of
Exception class and are not subclasses of class
RuntimeException. These are called so because the
compiler ensures (checks) that the methods that
throw checked exceptions deal with them.

• The RunTimeExceptions, Error, and their sub-
classes are called unchecked exceptions because the

compiler does not check whether a method is deal-
ing with these exceptions or not. All other exceptions
are called checked exceptions because the compiler
ensures that the methods that can throw checked
exceptions are supposed to deal with them.

• A method can cause one or more checked exceptions
directly or indirectly by calling other methods that
throw exceptions and does not deal with them. Then it
must declare the list of exceptions it can throw using
the throws clause.

• The keyword throw is used to throw an exception
object from within a method. Using throw keyword,
checked and unchecked exceptions can be thrown.

• For managing different types of exceptional condi-
tions, the fi ve keywords, namely try, catch, fi nally,
throw, and throws are used.

• The part of code that is suspected to create an excep-
tional situation is placed in a try block. It has the code
to throw one or more types of exceptions that are
likely to occur.

• Catch block follows immediately after the try block.
There can be more than one catch blocks. The excep-
tion is caught by a catch block whose type matches
the type of exception thrown.

• RunTime Exceptions form a subgroup of classes that
are subclasses of class Exception.

• A programmer may create his/her own exception
class by extending the exception class.

• An exception may be thrown and caught and also
partly dealt with a catch block and then rethrown; this
is called rethrowing an exception.

GLOSSARY
Catch The try block is immediately followed by one or
more catch blocks of statements to deal with the exceptions
thrown in try block.
Checked exceptions These are the exceptions that are
checked by a compiler and these are also called compile
time exceptions.
Custom exceptions These are also called user defi ned
exceptions. Aprogrammer may create his/her own exception

class by extending the exception class and can customize
the exception according to his/her needs.
Finally It is a keyword. The code in the fi nally block is
always executed irrespective of whether an exception is
thrown or not, or whether it is handled or not.
Nested try–catch block Here, tryk –yy catch block can be
placed within another try block’s body.

 3. If the try block throws more than one type of exception, the catch blocks must be provided for each type of
exception.

 4. The fi nally block is always executed whether an exception is thrown or not thrown, whether it is caught or not
caught.

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead34

Rethrowing exception An exception may be thrown and
caught and also partly dealt in a catch block and then rethrown.
Runtime exceptions These exceptions form a subgroup
of classes that are subclasses of class Exception. These are
also called unchecked Exceptions.

Try The part of code that is suspected to create an excep-
tional situation is placed in a try block.
Unchecked exceptions For these exceptions, the compiler
does not check whether the method that can throw these
exceptions has provided any exception handler code or not.

EXERCISES
Multiple-choice Questions
 1. Which of the following keywords is not a part of

exception handling?
 (a) thrown (c) try
 (b) catch (d) fi nally

 2. Which of the following statements are correct regard-
ing the fi nally block of statements?

 (a) It is a block of statements that must be executed
even if exception occurs.

 (b) It is the block that has a constant number of state-
ments.

 (c) It is the fi nal block for dealing with rethrown
exceptions.

 (d) None of these is true.

 3. The exception class belongs to which of the following
packages?

 (a) java.io (c) java.fi le
 (b) java.lang (d) java.util

 4. Which of the following keywords is used when a
method can throw an exception?

 (a) fi nally (c) throw
 (b) throws (d) catch

 5. Which keyword is used to monitor a statement for
exception?

 (a) catch (c) throw
 (b) try (d) throws

 6. Which of the following blocks gets executed compul-
sorily whether the exception is caught or not?

 (a) throws (c) fi nally
 (b) catch (d) throw

 7. In order to create customer exceptions class, we have
to

 (a) create our own try and catch block
 (b) extend exception class
 (c) use fi nally block
 (d) use throws keyword

 8. Which of the following is correct regarding the
exception created by attempt to divide by zero?

 (a) IndexOutOfBoundsException
 (b) ArithmeticException

(c) IllegalArgumentException
(d) MethodNotFoundException

9. Which of the following is the super class of all excep-
tion classes?
(a) Throwable
(b) RuntimeException
(c) Exception
(d) IOException

10. Which of the following is true for multiple catch
blocks?
(a) The superclass exception cannot be caught fi rst.
(b) Either the super or subclass can be caught fi rst.
(c) The superclass exception must be caught fi rst.
(d) None of these

11. Which of the following exceptions is thrown when an
array element is accessed beyond the array size?
(a) ArrayIndexOutOfBoundsException
(b) ArrayElementOutOfLimit
(c) ArrayIndexOutOfBounds
(d) ArrayElementOutOfBounds

12. Which of the following statements are correct regard-
ing ArrayStoreException?
(a) This exception arises because of lack of memory

to store more elements.
(b) This exception arises due to index value getting

more than declared.
(c) This exception arises because the type of the

new element to be added is different from the
declared type of the array.

(d) None of these is true.

13. Which exception will be thrown by the following code?
int Array = {5,4,6};
Math.sqrt(Array[3]);

(a) IllegalArgumentException
(b) ArithmeticException
(c) ArrayStoreExcepting
(d) ArrayIndexOutOfBoundsException

14. Which of the following errors are not supposed to be
dealt with as exceptions?

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Exception Handling 35

 (a) The sqrt() method of Math class has a negative
number as argument.

 (b) Linkage Error
 (c) Error due to division by zero
 (d) VitualMachineError

 15. Indicate the output of the following code:
 class ExceptionDemo {
 public static void main (String args[]){
 try{
 int a = 0;
 int b = 6/a;

System.out.print(“ OutputA”);
}
catch (ArithmeticException e) {
System.out.print(“OutputB”);
}
}
(a) OutputA
(b) OutputB
(c) Compilation error
(d) Runtime error

Review Exercises
1. What are exceptions?

 2. Are the exceptions methods or objects?

 3. What is dealt with in Error class and in Exception class?

 4. Illustrate the code for making your own Exception
class.

 5. What are the checked and unchecked exceptions?
Give one example of each.

 6. Explain the functions of try{}, catch{}, and fi nally {}
blocks.

7. Give an example of code of nested try blocks and
catch blocks.

8. What is ArrayStoreException?

9. Explain the code that can give rise to
IllegalAccessException.

10. What does fi nally block do?

11. What will happen if an exception is thrown and there
is no catch block to deal with it?

12. Why is an exception rethrown?

Programming Exercises
 1. Write a program to illustrate the output when a neg-

ative number is placed as argument for sqrt() method
of Math class.

 2. Write a program to illustrate the throwing of
ArrayIndexOutOfBoundsException exception.

 3. Write a program to illustrate a method that throws
exceptions.

 4. Write a program to illustrate the nested try and catch
blocks.

 5. Write a program to illustrate the IllegalAccessException.m

 6. Write a program that illustrates rethrowing of an
exception.

 7. Write a program that illustrates use of a user defi ned
exception.

 8. Write a program that throws InterruptedException.

 9. Write a program that throws StringIndexOutOf
BoundsException.

10. Write a program that throws ArithmeticException.

11. Write a program that illustrates the use of try-
with-source.

12. Write a program in which AutoClosable interface is
implemented.

13. Write a program in which the area of a room is calcu-m
lated and the cost of white washing is also evaluated.
Further, include the provisions for window on any of
the walls. The inputs regarding the parameters includ-
ing length, breadth, and height of the room are taken
through Command line. If there is a window, then its
parameters including length and breadth are also taken
through Command line. If these input parameters are
below 1, then raise an exception; otherwise, calculate
the area and cost and display the result. (Note that in
order to calculate the area of the room to be painted the
area of window must be deducted from the total of the
room.)

Debugging Exercises
 1. Debug the following program code and run the

program.

class TryCatch;
{public static void main (String Str[])

{
 inti = 6, j = 0, k;
 {try
 System.out.println (“Entered try

block.”);

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

Java—One Step Ahead36

 k = i/j;
 System.out.println (“Exiting try

block.”);}
 catch { (ArithmeticException e)
 System.out.println (“Arithmetic

Exception caught.”);
 System.out.println (“Exiting catch

block.”); }
 j = 2;
 System.out.println (“i/j = ” + i/j);
 }}

 2. Debug the following program code and run the
program.
class DemoTest
 {public static void main (String Str[])
{ int a = 8, b = 0, m;
try {
System.out.println (“Hello, it is try
block”);
 m = a/b;
System.out.println (“Exiting try block”);
catch (ArithmeticException)
{ System.out.println (“Arithmetic Exception
caught.”);
}
 b = 5;
 System.out.println (“The result is a/b

= ” + a/b);
 }
}

 3. Debug the following program code and run the
program.
class Example1 {
public static void main (String args[])
try {
System.out.println (“Entered try block.”);
int num = 43/0;
System.out.println (num);
}
catch(ArrayIndexOutOfBoundsException e){
System.out.println
(“ArrayIndexOutOfBoundsException ”);}
Finally {
System.out.println (“Entered fi nally
block1.”);
System.out.println (“Exiting fi nally
block1.”); }
}
Finally{
System.out.println (“Entered fi nally
block2.”);
System.out.println (“Exiting fi nally
block2.”); }
 }
 }

4. Debug the following program code and run the
program.
class ExceptionCustom
 {
ExceptionCustom (String Message)
{ super (Message);
 } }
class Exception1
{public static void main(String args[])
{ byte i = 3, j = 6 ;

try
{if(i/j== 0)
throw new ExceptionCustom (“Exception
Occurred”);

catch (ExceptionCustom Se)
 {System.out.println(“The exception has
been caught.”);
System.out.println(Se.getMessage());}
}}

 5. Debug the following program code and run the
program.
public class UserException Extends
Exception
{
Public UserException (Message)
{ super (Message);
} }
public class TestException
{public static void main(String args[])
{ TestException ex = new TestException();
ex.giveNumbers();
}
public void giveNumbers() throw
UserException
{
for(int n = 0; n<10; i++);
{ System.out.println(“n = ” +n);
if(n == 4)
throws new UserException (“Exception is
caught.”);
}
 }}

 6. Debug the following program code and run the
program.
import java.io.*;
public class DemoException{
void myVote(int age) throw IOException,
ClassNotFoundException{
if (age<18)
throws new IOException (“Exception Message
1”);
else
throws new ClassNotFoundException

Cam
eo

 C
or

po
ra

te
Ser

vic
es

 Li
mite

d

Fo
r R

ev
iew

 P
ur

po
se

s O
nly

